Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Integrated proteomic and metabolomic analyses revealed molecular adjustments in Populus × canescens colonized with the ectomycorrhizal fungus Paxillus involutus, which limited plant host growth.

Identifieur interne : 000314 ( Main/Exploration ); précédent : 000313; suivant : 000315

Integrated proteomic and metabolomic analyses revealed molecular adjustments in Populus × canescens colonized with the ectomycorrhizal fungus Paxillus involutus, which limited plant host growth.

Auteurs : Agnieszka Szuba [Pologne] ; Łukasz Marczak [Pologne] ; Izabela Ratajczak [Pologne] ; Anna Kasprowicz-Malu Ki [Pologne] ; Joanna Mucha [Pologne]

Source :

RBID : pubmed:32608104

Abstract

Ectomycorrhizae (ECMs) are a highly context-dependent interactions that are not always beneficial for the plant host, sometimes leading to a decrease in plant growth. However, the molecular status of these plants remains unknown. We studied Populus × canescens microcuttings characterized by impaired growth in response to colonization by a Paxillus involutus strain via integrative proteomics-metabolomics analyses. The analysed strain was characterized by low compatibility and formed only mantles, not a Hartig net, in the majority of root tips. The increased abundance of photosynthetic proteins and foliar carbohydrates co-occurred with signals of intensified resource exchange via the stems of colonized plants. In the roots, intensified C metabolism resulted in the biosynthesis of secondary C compounds unavailable to the fungal partner but also C skeletons necessary to increase insufficient N uptake from the hyphae. The stress response was also detected in colonized plants but was similar to that reported previously during mutualistic ECM interactions. In colonized poplar plants, mechanisms to prevent imbalanced C/N trade-offs were activated. Root metabolism strongly depended on features of the whole plant, especially the foliar C/N budget. However, despite ECM-triggered growth impairment and the foliar nutrient status, the fungal partner was recognized to be a symbiotic partner.

DOI: 10.1111/1462-2920.15146
PubMed: 32608104


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Integrated proteomic and metabolomic analyses revealed molecular adjustments in Populus × canescens colonized with the ectomycorrhizal fungus Paxillus involutus, which limited plant host growth.</title>
<author>
<name sortKey="Szuba, Agnieszka" sort="Szuba, Agnieszka" uniqKey="Szuba A" first="Agnieszka" last="Szuba">Agnieszka Szuba</name>
<affiliation wicri:level="1">
<nlm:affiliation>Polish Academy of Sciences, Institute of Dendrology, Parkowa 5, Kórnik, PL-62035, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Polish Academy of Sciences, Institute of Dendrology, Parkowa 5, Kórnik, PL-62035</wicri:regionArea>
<wicri:noRegion>PL-62035</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Marczak, Lukasz" sort="Marczak, Lukasz" uniqKey="Marczak L" first="Łukasz" last="Marczak">Łukasz Marczak</name>
<affiliation wicri:level="1">
<nlm:affiliation>Polish Academy of Sciences, Institute of Bioorganic Chemistry, Noskowskiego 12/14, Poznań, PL-61704, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Polish Academy of Sciences, Institute of Bioorganic Chemistry, Noskowskiego 12/14, Poznań, PL-61704</wicri:regionArea>
<wicri:noRegion>PL-61704</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ratajczak, Izabela" sort="Ratajczak, Izabela" uniqKey="Ratajczak I" first="Izabela" last="Ratajczak">Izabela Ratajczak</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, Poznań, PL-60625, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, Poznań, PL-60625</wicri:regionArea>
<wicri:noRegion>PL-60625</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kasprowicz Malu Ki, Anna" sort="Kasprowicz Malu Ki, Anna" uniqKey="Kasprowicz Malu Ki A" first="Anna" last="Kasprowicz-Malu Ki">Anna Kasprowicz-Malu Ki</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznań, PL-61614, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznań, PL-61614</wicri:regionArea>
<wicri:noRegion>PL-61614</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mucha, Joanna" sort="Mucha, Joanna" uniqKey="Mucha J" first="Joanna" last="Mucha">Joanna Mucha</name>
<affiliation wicri:level="1">
<nlm:affiliation>Polish Academy of Sciences, Institute of Dendrology, Parkowa 5, Kórnik, PL-62035, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Polish Academy of Sciences, Institute of Dendrology, Parkowa 5, Kórnik, PL-62035</wicri:regionArea>
<wicri:noRegion>PL-62035</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32608104</idno>
<idno type="pmid">32608104</idno>
<idno type="doi">10.1111/1462-2920.15146</idno>
<idno type="wicri:Area/Main/Corpus">000219</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000219</idno>
<idno type="wicri:Area/Main/Curation">000219</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000219</idno>
<idno type="wicri:Area/Main/Exploration">000219</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Integrated proteomic and metabolomic analyses revealed molecular adjustments in Populus × canescens colonized with the ectomycorrhizal fungus Paxillus involutus, which limited plant host growth.</title>
<author>
<name sortKey="Szuba, Agnieszka" sort="Szuba, Agnieszka" uniqKey="Szuba A" first="Agnieszka" last="Szuba">Agnieszka Szuba</name>
<affiliation wicri:level="1">
<nlm:affiliation>Polish Academy of Sciences, Institute of Dendrology, Parkowa 5, Kórnik, PL-62035, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Polish Academy of Sciences, Institute of Dendrology, Parkowa 5, Kórnik, PL-62035</wicri:regionArea>
<wicri:noRegion>PL-62035</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Marczak, Lukasz" sort="Marczak, Lukasz" uniqKey="Marczak L" first="Łukasz" last="Marczak">Łukasz Marczak</name>
<affiliation wicri:level="1">
<nlm:affiliation>Polish Academy of Sciences, Institute of Bioorganic Chemistry, Noskowskiego 12/14, Poznań, PL-61704, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Polish Academy of Sciences, Institute of Bioorganic Chemistry, Noskowskiego 12/14, Poznań, PL-61704</wicri:regionArea>
<wicri:noRegion>PL-61704</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ratajczak, Izabela" sort="Ratajczak, Izabela" uniqKey="Ratajczak I" first="Izabela" last="Ratajczak">Izabela Ratajczak</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, Poznań, PL-60625, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, Poznań, PL-60625</wicri:regionArea>
<wicri:noRegion>PL-60625</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kasprowicz Malu Ki, Anna" sort="Kasprowicz Malu Ki, Anna" uniqKey="Kasprowicz Malu Ki A" first="Anna" last="Kasprowicz-Malu Ki">Anna Kasprowicz-Malu Ki</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznań, PL-61614, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznań, PL-61614</wicri:regionArea>
<wicri:noRegion>PL-61614</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mucha, Joanna" sort="Mucha, Joanna" uniqKey="Mucha J" first="Joanna" last="Mucha">Joanna Mucha</name>
<affiliation wicri:level="1">
<nlm:affiliation>Polish Academy of Sciences, Institute of Dendrology, Parkowa 5, Kórnik, PL-62035, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Polish Academy of Sciences, Institute of Dendrology, Parkowa 5, Kórnik, PL-62035</wicri:regionArea>
<wicri:noRegion>PL-62035</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Environmental microbiology</title>
<idno type="eISSN">1462-2920</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ectomycorrhizae (ECMs) are a highly context-dependent interactions that are not always beneficial for the plant host, sometimes leading to a decrease in plant growth. However, the molecular status of these plants remains unknown. We studied Populus × canescens microcuttings characterized by impaired growth in response to colonization by a Paxillus involutus strain via integrative proteomics-metabolomics analyses. The analysed strain was characterized by low compatibility and formed only mantles, not a Hartig net, in the majority of root tips. The increased abundance of photosynthetic proteins and foliar carbohydrates co-occurred with signals of intensified resource exchange via the stems of colonized plants. In the roots, intensified C metabolism resulted in the biosynthesis of secondary C compounds unavailable to the fungal partner but also C skeletons necessary to increase insufficient N uptake from the hyphae. The stress response was also detected in colonized plants but was similar to that reported previously during mutualistic ECM interactions. In colonized poplar plants, mechanisms to prevent imbalanced C/N trade-offs were activated. Root metabolism strongly depended on features of the whole plant, especially the foliar C/N budget. However, despite ECM-triggered growth impairment and the foliar nutrient status, the fungal partner was recognized to be a symbiotic partner.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32608104</PMID>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1462-2920</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Jun</Month>
<Day>30</Day>
</PubDate>
</JournalIssue>
<Title>Environmental microbiology</Title>
<ISOAbbreviation>Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Integrated proteomic and metabolomic analyses revealed molecular adjustments in Populus × canescens colonized with the ectomycorrhizal fungus Paxillus involutus, which limited plant host growth.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/1462-2920.15146</ELocationID>
<Abstract>
<AbstractText>Ectomycorrhizae (ECMs) are a highly context-dependent interactions that are not always beneficial for the plant host, sometimes leading to a decrease in plant growth. However, the molecular status of these plants remains unknown. We studied Populus × canescens microcuttings characterized by impaired growth in response to colonization by a Paxillus involutus strain via integrative proteomics-metabolomics analyses. The analysed strain was characterized by low compatibility and formed only mantles, not a Hartig net, in the majority of root tips. The increased abundance of photosynthetic proteins and foliar carbohydrates co-occurred with signals of intensified resource exchange via the stems of colonized plants. In the roots, intensified C metabolism resulted in the biosynthesis of secondary C compounds unavailable to the fungal partner but also C skeletons necessary to increase insufficient N uptake from the hyphae. The stress response was also detected in colonized plants but was similar to that reported previously during mutualistic ECM interactions. In colonized poplar plants, mechanisms to prevent imbalanced C/N trade-offs were activated. Root metabolism strongly depended on features of the whole plant, especially the foliar C/N budget. However, despite ECM-triggered growth impairment and the foliar nutrient status, the fungal partner was recognized to be a symbiotic partner.</AbstractText>
<CopyrightInformation>© 2020 Society for Applied Microbiology and John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Szuba</LastName>
<ForeName>Agnieszka</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-6278-3897</Identifier>
<AffiliationInfo>
<Affiliation>Polish Academy of Sciences, Institute of Dendrology, Parkowa 5, Kórnik, PL-62035, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Marczak</LastName>
<ForeName>Łukasz</ForeName>
<Initials>Ł</Initials>
<AffiliationInfo>
<Affiliation>Polish Academy of Sciences, Institute of Bioorganic Chemistry, Noskowskiego 12/14, Poznań, PL-61704, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ratajczak</LastName>
<ForeName>Izabela</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, Poznań, PL-60625, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kasprowicz-Maluśki</LastName>
<ForeName>Anna</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznań, PL-61614, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mucha</LastName>
<ForeName>Joanna</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Polish Academy of Sciences, Institute of Dendrology, Parkowa 5, Kórnik, PL-62035, Poland.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>DEC-2011/03/D/NZ9/05500</GrantID>
<Agency>the National Science Center, Poland</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Polish Academy of Sciences</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Environ Microbiol</MedlineTA>
<NlmUniqueID>100883692</NlmUniqueID>
<ISSNLinking>1462-2912</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>06</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32608104</ArticleId>
<ArticleId IdType="doi">10.1111/1462-2920.15146</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Balasubramanian, V., Vashisht, D., Cletus, J., and Sakthivel, N. (2012) Plant beta-1,3-glucanases: their biological functions and transgenic expression against phytopathogenic fungi. Biotechnol Lett 34: 1983-1990.</Citation>
</Reference>
<Reference>
<Citation>Balestrini, R., and Bonfante, P. (2014) Cell wall remodeling in mycorrhizal symbiosis: a way towards biotrophism. Front Plant Sci 2014: 237.</Citation>
</Reference>
<Reference>
<Citation>Bidartondo, M.I., Ek, H., Wallander, H., and Söderström, B. (2001) Do nutrient additions alter carbon sink strength of ectomycorrhizal fungi? New Phytol 151: 543-550.</Citation>
</Reference>
<Reference>
<Citation>Blaudez, D., Chalot, M., Dizengreel, P., and Botton, B. (1998) Structure and function of the ectomycorrhizal association between Paxillus involutus and Betula pendula. II. Metabolic changes during mycorrhiza formation. New Phytol 138: 543-552.</Citation>
</Reference>
<Reference>
<Citation>Brunner, I., and Scheidegger, C. (1995) Effects of high nitrogen concentrations on ectomycorrhizal structure and growth of seedlings of Picea abies (L.) Karst. New Phytol 129: 83-95.</Citation>
</Reference>
<Reference>
<Citation>Chalot, M., and Plassard, C. (2011). Ectomycorrhiza and nitrogen provision to the host tree. J. C.Polacco & C. D. Todd Ecological aspects of nitrogen metabolism in plants., (69-94). Hoboken, NJ, USA: Wiley-Blackwell.</Citation>
</Reference>
<Reference>
<Citation>Corrêa, A., and Martins-Loução, M.A. (2010) C/N interactions and the cost: benefit balance in ectomycorrhizae. In Diversity and Biotechnology of Ectomycorrhizae, Vol. 25, Rai, M., and Varma, A. (eds). Heidelberg/Berlin: Soil Biology Series, Springer-Verlag., pp. 387-403.</Citation>
</Reference>
<Reference>
<Citation>Corrêa, A., Hampp, R., Magel, E., and Martins-Loução, M.-.A. (2011) Carbon allocation in ectomycorrhizal plants at limited and optimal N supply: an attempt at unraveling conflicting theories. Mycorrhiza 21: 35-51.</Citation>
</Reference>
<Reference>
<Citation>Corrêa, A., Strasser, R.J., and Martins-Loução, M.A. (2006) Are mycorrhiza always beneficial? Plant Soil 279: 65-73.</Citation>
</Reference>
<Reference>
<Citation>Daguerre, Y., Plett, J.M., and Veneault-Fourrey, C. (2016) Signaling pathways driving the development of ectomycorrhizal symbiosis. In Molecular Mycorrhizal Symbiosis, Martin, F. (ed). New Jersey: John Wiley & Sons, Inc, pp. 141-160.</Citation>
</Reference>
<Reference>
<Citation>Duplessis, S., Courty, P.E., Tagu, D., and Martin, F. (2005) Transcript patterns associated with ectomycorrhiza development in Eucalyptus globulus and Pisolithus microcarpus. New Phytol 165: 599-611.</Citation>
</Reference>
<Reference>
<Citation>Fischinger, S.A., and Schulze, J. (2010) The importance of nodule CO2 fixation for the efficiency of symbiotic nitrogen fixation in pea at vegetative growth and during pod formation. J Exp Bot 61: 2281-2291.</Citation>
</Reference>
<Reference>
<Citation>Friede, M., Unger, S., Heuer, L., Stammes, R., and Beyschlag, W. (2018) Nitrogen limitation impairs plant control over the arbuscular mycorrhizal symbiosis in response to phosphorus and shading in two European sand dune species. Plant Ecology 219: 17-29.</Citation>
</Reference>
<Reference>
<Citation>Gafur, A., Schützendübel, A., Langenfeld-Heyser, R., Fritz, E., and Polle, A. (2004) Compatible and incompetent Paxillus involutus isolates for ectomycorrhiza formation in vitro with poplar (Populus x canescens) differ in H2O2 production. Plant Biology (Stuttgart, Germany) 6: 91-99.</Citation>
</Reference>
<Reference>
<Citation>Gafur, A., Schutzendubel, A., and Polle, A. (2007) Peroxidase activity in poplar inoculated with compatible and incompetent isolates of Paxillus involutus. HAYATI J Biosciences 14: 49-53.</Citation>
</Reference>
<Reference>
<Citation>Garcia, K., Doidy, J., Zimmermann, S.D., Wipf, D., and Courty, P.E. (2016) Take a trip through the plant and fungal transportome of mycorrhiza. Trends Plant Sci 21: 937-950.</Citation>
</Reference>
<Reference>
<Citation>Graham, J.H., and Abbott, L.K. (2000) Wheat responses to aggressive and non-aggressive arbuscular mycorrhizal fungi. Plant Soil 220: 207-218.</Citation>
</Reference>
<Reference>
<Citation>Grunze, N., Willmann, M., and Nehls, U. (2004) The impact of ectomycorrhiza formation on monosaccharide transporter gene expression in poplar roots. New Phytol 164: 147-155.</Citation>
</Reference>
<Reference>
<Citation>Harpaz-Saad, S., Yoon, G.M., Mattoo, A.K., and Kieber, J.J. (2012) The formation of ACC and competition between polyamines and ethylene for SAM. In Annual Plant Reviews Volume: 44 The Plant Hormone Ethylene, Vol. 44, McManus, M.T. (ed). Oxford: Wiley-Blackwell, pp. 53-81.</Citation>
</Reference>
<Reference>
<Citation>Hassan, S., and Mathesius, U. (2012). The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. Journal of Experimental Botany, 63: 3429-3444. http://dx.doi.org/10.1093/jxb/err430.</Citation>
</Reference>
<Reference>
<Citation>Hildebrandt, T.M., Nunes Nesi, A., Araújo, W.L., and Braun, H.P. (2015) Amino acid catabolism in plants. Mol Plant 8: 1563-1579.</Citation>
</Reference>
<Reference>
<Citation>Hobbie, E.A., and Colpaert, J.V. (2003) Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants. New Pytol 157: 115-126.</Citation>
</Reference>
<Reference>
<Citation>Igamberdiev, A.U., and Kleczkowski, L.A. (2018) The glycerate and phosphorylated pathways of serine synthesis in plants: the branches of plant glycolysis linking carbon and nitrogen metabolism. Front Plant Sci 9: 318.</Citation>
</Reference>
<Reference>
<Citation>Johnson, N.C., and Graham, J.H. (2013) The continuum concept remains a useful framework for studying mycorrhizal functioning. Plant Soil 363: 411-419.</Citation>
</Reference>
<Reference>
<Citation>Johnson, N.C., Graham, J.H., & Smith, F.A. (1997). Functioning of mycorrhizal associations along the mutualism-parasitism continuum. The New Phytologist, 135(4), 575-586.</Citation>
</Reference>
<Reference>
<Citation>Kesten, C., Menna, A., and Sánchez-Rodríguez, C. (2017) Regulation of cellulose synthesis in response to stress. Curr Opin Plant Biol 40: 106-113.</Citation>
</Reference>
<Reference>
<Citation>Kleczewski, N.M., Herms, D.A., and Bonello, P. (2010) Effects of soil type, fertilization and drought on carbon allocation to root growth and partitioning between secondary metabolism and ectomycorrhizae of Betula papyrifera. Tree Physiol 30: 807-817.</Citation>
</Reference>
<Reference>
<Citation>Kottke, I., Guttenberger, M., Hampp, R., and Oberwinkler, F. (1987) An in vitro method for establishing mycorrhizae on coniferous tree seedlings. Trees 1: 191-194.</Citation>
</Reference>
<Reference>
<Citation>Krpata, D., Peintner, U., Langer, I., Fitz, W.J., and Schweiger, P. (2008) Ectomycorrhizal communities associated with Populus tremula growing on a heavy metal contaminated site. Mycol Res 112: 1069-1079.</Citation>
</Reference>
<Reference>
<Citation>Kytöviita, M.M. (2005) Role of nutrient level and defoliation on symbiotic function: experimental evidence by tracing 14C/15N exchange in mycorrhizal birch seedlings. Mycorrhiza 15: 65-70.</Citation>
</Reference>
<Reference>
<Citation>Le Roux, M.R., Ward, C.L., Botha, F.C., and Valentine, A.J. (2006) Routes of pyruvate synthesis in phosphorus-deficient lupin roots and nodules. New Phytol 169: 399-408.</Citation>
</Reference>
<Reference>
<Citation>Loewe, A., Eing, W., Shi, L., Dizengremel, P., and Hampp, R. (2000) Mycorrhiza formation and elevated CO2 both increase the capacity for sucrose synthesis in source leaves of spruce and aspen. Mycorrhiza 145: 565-574.</Citation>
</Reference>
<Reference>
<Citation>Luo, Z.B., Janz, D., Jiang, X., Göbel, C., Wildhagen, H., Tan, Y., et al. (2009) Upgrading root physiology for stress tolerance by ectomycorrhizas: insights from metabolite and transcriptional profiling into reprogramming for stress anticipation. Plant Physiol 151: 1902-1917.</Citation>
</Reference>
<Reference>
<Citation>Martins, A., Casimiro, A., and Pais, M.S. (1997) Influence of mycorrhization on physiological parameters of micropropagated Castanea sativa mill. Plants. Mycorrhiza 7: 161-165.</Citation>
</Reference>
<Reference>
<Citation>Michalak, A. (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish J Environ Stud 15: 523-530.</Citation>
</Reference>
<Reference>
<Citation>Müller, A., Volmer, K., Mishra-Knyrim, M., and Polle, A. (2013) Growing poplars for research with and without mycorrhizas. Front Plant Sci 4: 332.</Citation>
</Reference>
<Reference>
<Citation>Münzenberger, B., Kottke, I., and Oberwinkler, F. (1995) Reduction of phenolics in mycorrhizas of Larix decidua mill. Tree Physiol 15: 191-196.</Citation>
</Reference>
<Reference>
<Citation>Nagy, N.E., and Fossdal, C.G. (2013) Host responses in Norway spruce roots induced to the pathogen Ceratocystis polonica are evaded or suppressed by the ectomycorrhizal fungus Laccaria bicolor. Plant Biology 15: 99-110.</Citation>
</Reference>
<Reference>
<Citation>Nehls, U. (2008) Mastering ectomycorrhizal symbiosis: the impact of carbohydrates. J Exp Bot 59: 1097-1108.</Citation>
</Reference>
<Reference>
<Citation>Pandey, K.K., and Nagveni, H.C. (2007) Rapid characterisation of brown rot and white rot degraded pine and rubberwood by FTIR spectroscopy. Holz Roh- Werkst 65: 477-481.</Citation>
</Reference>
<Reference>
<Citation>Pfabel, C., Eckhardt, K.U., Baum, C., Struck, C., Frey, P., and Weih, M. (2012) Impact of ectomycorrhizal colonization and rust infection on the secondary metabolism of poplar (Populus trichocarpa × deltoides). Tree Physiol 32: 1357-1364.</Citation>
</Reference>
<Reference>
<Citation>Plett, J.M., Khachane, A., Ouassou, M., Sundberg, B., Kohler, A., and Martin, F. (2014) Ethylene and jasmonic acid act as negative modulators during mutualistic symbiosis between Laccaria bicolor and Populus roots. New Phytol 202: 270-286.</Citation>
</Reference>
<Reference>
<Citation>Rodakowska, E., Derba-Maceluch, M., Kasprowicz, A., Zawadzki, P., Szuba, A., Kierzkowski, D., and Wojtaszek, P. (2008) Signaling and cell walls. In Signaling in Plants, Baluska, F. (ed). Berlin, Heidelberg: Springer Verlag, pp. 173-195.</Citation>
</Reference>
<Reference>
<Citation>Sa, G., Yao, J., Deng, C., Liu, J., Zhang, Y., Zhu, Z., et al. (2019) Amelioration of nitrate uptake under salt stress by ectomycorrhiza with and without a Hartig net. New Phytol 222: 1951-1964.</Citation>
</Reference>
<Reference>
<Citation>Sakr, S., Wang, M., Dédaldéchamp, F., Perez-Garcia, M.D., Ogé, L., Hamama, L., and Atanassova, R. (2018) The sugar-signaling hub: overview of regulators and interaction with the hormonal and metabolic network. Int J Mol Sci 19: E2506.</Citation>
</Reference>
<Reference>
<Citation>Salzer, P., and Hager, A. (1991) Sucrose utilization of the ectomycorrhizal fungi Amanita muscaria and Hebeloma crustuliniforme depends on the cell wall-bound invertase activity of their host Picea abies. Plant Biol 104: 439-445.</Citation>
</Reference>
<Reference>
<Citation>Santos-Sánchez, N.F., Salas-Coronado, R., Hernández-Carlos, B., and Villanueva-Cañongo, C. (2019) Shikimic acid pathway in biosynthesis of phenolic compounds. In Plant Physiological Aspects of Phenolic Compounds. London: IntechOpen Limited.</Citation>
</Reference>
<Reference>
<Citation>Schaeffer, C., Johann, P., Nehls, U., and Hampp, R. (1996) Evidence for an up-regulation of the host and a down-regulation of the fungal phosphofructokinase activity in ectomycorrhizas of Norway spruce and fly agaric. New Phytol 134: 697-702.</Citation>
</Reference>
<Reference>
<Citation>Sebastiana, M., Martins, J., Figueiredo, A., Monteiro, F., Sardans, J., Penuelas, J., et al. (2017) Oak protein profile alterations upon root colonization by an ectomycorrhizal fungus. Mycorrhiza 27: 09-128.</Citation>
</Reference>
<Reference>
<Citation>Sebastiana, M., Vieira, B., Lino-Neto, T., Monteiro, F., Figueiredo, A., Sousa, L., et al. (2014) Oak root response to ectomycorrhizal symbiosis establishment: RNA-Seq derived transcript identification and expression profiling. PLoS One 9: e98376.</Citation>
</Reference>
<Reference>
<Citation>Shaul, O., Galili, S., Volpin, H., Ginzberg, I.I., Elad, Y., Chet, I.I., and Kapulnik, Y. (1999) Mycorrhiza-induced changes in disease severity and PR protein expression in tobacco leaves. Mol Plant Microbe Interact 12: 1000-1007.</Citation>
</Reference>
<Reference>
<Citation>Simoneau, P., Juge, C., Dupuis, J.-.Y., Viémont, J.-.D., Moreau, J.-.C., and Strullu, D.-.G. (1994) Protein biosynthesis changes during mycorrhiza formation in roots of micropropagated birch. Acta Botanica Gallica 141: 429-435.</Citation>
</Reference>
<Reference>
<Citation>Słupianek, A., Kasprowicz-Maluśki, A., Myśkow, E., Turzańska, M., & Sokołowska, K. (2019). Endocytosis Acts as Transport Pathway in Wood. New Phytol, 222: 1846-1861.</Citation>
</Reference>
<Reference>
<Citation>Smith, F.A., and Smith, S.E. (2013) How useful is the mutualism-parasitism continuum of arbuscular mycorrhizal functioning? Plant Soil 363: 7-18.</Citation>
</Reference>
<Reference>
<Citation>Smith, S.E., and Read, D.J. (2008) Mycorrhizal Symbiosis. London, UK: Academic Press.</Citation>
</Reference>
<Reference>
<Citation>Swarcewicz, B., Sawikowska, A., Marczak, Ł., Łuczak, M., Ciesiołka, D., Krystkowiak K Kuczyńska, A., et al. (2017) Effect of drought stress on metabolite contents in barley recombinant inbred line population revealed by untargeted GC-MS profiling. Acta Physiol Plantarum 39: 158.</Citation>
</Reference>
<Reference>
<Citation>Szuba, A. (2015) Ectomycorrhiza of Populus. For Ecol Manage 347: 156-169.</Citation>
</Reference>
<Reference>
<Citation>Szuba, A., Karliński, L., Krzesłowska, M., and Hazubska-Przybył, T. (2017) Inoculation with a Pb-tolerant strain of Paxillus involutus improves growth and Pb tolerance of Populus × canescens under in vitro conditions. Plant Soil 412: 253-266.</Citation>
</Reference>
<Reference>
<Citation>Szuba, A., Marczak, Ł., Karliński, L., Mucha, J., and Tomaszewski, D. (2019) Regulation of the leaf proteome by inoculation of Populus ×canescens with two Paxillus involutus isolates differing in root colonization rates. Mycorrhiza 29: 503-517.</Citation>
</Reference>
<Reference>
<Citation>Szuba, A., Marczak, Ł., and Kozłowski, R. (2020) Role of the proteome in providing phenotypic stability in control and ectomycorrhizal poplar plants exposed to chronic mild Pb stress [Epub ahead of print. Environ Pollut 264: 114585.</Citation>
</Reference>
<Reference>
<Citation>Szuba, A., Wojakowska, A., and Lorenc-Plucińska, G. (2013) An optimized method to extract poplar leaf proteins for two-dimensional gel electrophoresis guided by analysis of polysaccharides and phenolic compounds. Electrophoresis 34: 3234-3243.</Citation>
</Reference>
<Reference>
<Citation>Tegeder, M. (2014) Transporters involved in source to sink partitioning of amino acids and ureides: opportunities for crop improvement. J Exp Bot 65: 1865-1878.</Citation>
</Reference>
<Reference>
<Citation>Toro, G., and Pinto, M. (2015) Plant respiration under low oxygen. Chilean J Agric Res 75: 57-70.</Citation>
</Reference>
<Reference>
<Citation>Torres, M.A. (2010) ROS in biotic interactions. Physiol Plant 138: 414-429.</Citation>
</Reference>
<Reference>
<Citation>Tschaplinski, T.J., Plett, J.M., Engle, N.L., Deveau, A., Cushman, K.C., Martin, M.Z., et al. (2014) Populus trichocarpa and Populus deltoides exhibit different metabolomic responses to colonization by the symbiotic fungus Laccaria bicolor. Mol Plant Microbe Interact 27: 546-556.</Citation>
</Reference>
<Reference>
<Citation>Tuomi, J., Kytӧviita, M.M., and Hӓrdling, R. (2001) Cost efficiency of nutrient acquisition and the advantage of mycorrhizal symbiosis for the host plant. Oikos 92: 62-70.</Citation>
</Reference>
<Reference>
<Citation>van Dongen, J.T., Gupta, K.J., Ramírez-Aguilar, S.J., Araújo, W.L., Nunes-Nesi, A., and Fernie, A.R. (2011) Regulation of respiration in plants: a role for alternative metabolic pathways. J Plant Physiol 168: 1434-1443.</Citation>
</Reference>
<Reference>
<Citation>Veneault-Fourrey, C., Commun, C., Kohler, A., Morin, E., Balestrini, R., Plett, J., et al. (2014) Genomic and transcriptomic analysis of Laccaria bicolor CAZome reveals insights into polysaccharides remodelling during symbiosis establishment. Fungal Genet Biol 72: 168-181.</Citation>
</Reference>
<Reference>
<Citation>Wright, D.P., Scholes, J.D., Read, D.J., and Rolfe, S.A. (2000) Changes in carbon allocation and expression of carbon transporter genes in Betula pendula Roth. Colonized by the ectomycorrhizal fungus Paxillus involutus (Batsch) Fr. Plant, Cell Enviro 23: 39-49.</Citation>
</Reference>
<Reference>
<Citation>Zabalza, A., van Dongen, J.T., Froehlich, A., Oliver, S.N., Faix, B., Gupta, K.J., et al. (2009) Regulation of respiration and fermentation to control the plant internal oxygen concentration. Plant Physiol 149: 1087-1098.</Citation>
</Reference>
<Reference>
<Citation>Zou, Y.N., Huang, Y.M., Wu, Q.S., and He, X.H. (2015) Mycorrhiza-induced lower oxidative burst is related with higher antioxidant enzyme activities, net H2O2 effluxes, and Ca2+ influxes in trifoliate orange roots under drought stress. Mycorrhiza 25: 143-152.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pologne</li>
</country>
</list>
<tree>
<country name="Pologne">
<noRegion>
<name sortKey="Szuba, Agnieszka" sort="Szuba, Agnieszka" uniqKey="Szuba A" first="Agnieszka" last="Szuba">Agnieszka Szuba</name>
</noRegion>
<name sortKey="Kasprowicz Malu Ki, Anna" sort="Kasprowicz Malu Ki, Anna" uniqKey="Kasprowicz Malu Ki A" first="Anna" last="Kasprowicz-Malu Ki">Anna Kasprowicz-Malu Ki</name>
<name sortKey="Marczak, Lukasz" sort="Marczak, Lukasz" uniqKey="Marczak L" first="Łukasz" last="Marczak">Łukasz Marczak</name>
<name sortKey="Mucha, Joanna" sort="Mucha, Joanna" uniqKey="Mucha J" first="Joanna" last="Mucha">Joanna Mucha</name>
<name sortKey="Ratajczak, Izabela" sort="Ratajczak, Izabela" uniqKey="Ratajczak I" first="Izabela" last="Ratajczak">Izabela Ratajczak</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000314 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000314 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32608104
   |texte=   Integrated proteomic and metabolomic analyses revealed molecular adjustments in Populus × canescens colonized with the ectomycorrhizal fungus Paxillus involutus, which limited plant host growth.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32608104" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020